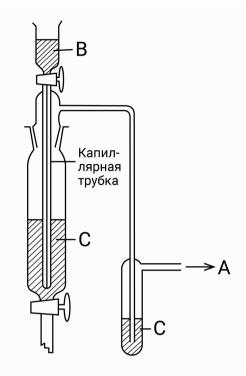
Школьный этап ВсОШ 2022/23, химия, 10 класс, группа 3. Текстовая версия

8:00—22:00 6 окт 2022 г.

Правила записи ответов, вспомогательные материалы

1. Если в задании требуется указать степень окисления, сначала указывайте знак, потом число.

Пример: +3.


2. Названия изотопов записывайте в формате «элемент — массовое число».

Пример: С14.

Таблица Менделеева, таблица растворимости, ряд напряжений распечатаны на отдельном листе.

4 балла

Дан рисунок установки для получения газообразного вещества A из жидкостей B и C. В делительную воронку наливают жидкость C, а из капельной воронки добавляют понемногу B, чтобы получить требуемую скорость потока газа A. Этот газ является бесцветным, имеет резкий запах. Он очень хорошо растворим в воде, при пропускании 350 литров (н.у.) A в 1000 мл дистиллированной воды можно получить 1330 мл жидкости B плотностью 1.18 г/мл.

Ниже указаны промышленные стадии получения жидкости С:

$$\mathrm{FeS_2} \xrightarrow[t \circ \mathrm{C}]{\mathrm{O_2}} ? \xrightarrow[V_2\mathrm{O_5}, t \circ \mathrm{C}]{\mathrm{C}} ? \xrightarrow[\mathrm{C}]{\mathrm{H_2O}} \mathrm{C}$$

Запишите формулу вещества А.

Ответ

Запишите формулу основного компонента жидкости ${\bf C}.$

Ответ

Найдите массу основного компонента C, которую можно получить из $120\,\mathrm{r}\,\mathrm{FeS}_2$. Ответ выразите в граммах, округлите до целых.

4 балла

Хлорид серы S_2Cl_2 может быть получен взаимодействием простых веществ при нагревании. При взаимодействии этого хлорида с водой образуется очень мелкий взвешенный желтоватый осадок, а в растворе остаются оксид серы (IV) и соляная кислота. Чему равна сумма коэффициентов в описанной реакции гидролиза, если придать им вид наименьших целых чисел?

Число

Nº 3

4 балла

Механик нашёл в гараже 100 г раствора олеума с концентрацией свободного триоксида серы 10~% по массе и захотел приготовить аккумуляторный электролит.

Найдите массу 40~% раствора серной кислоты, который можно получить путём аккуратного добавления заданного количества олеума к холодной воде.

Ответ выразите в граммах, округлите до целых.

Число

Nº 4

4 балла

В 100 мл кипящей воды растворили 1 моль амида натрия $NaNH_2$. Выделившийся газ собрали и выдержали над 10 г оксида меди (II) при нагревании, в результате чего образовалась смесь газов. Эту смесь газов после охлаждения пропустили через разбавленный раствор серной кислоты. Очищенный таким образом азот занял объём 800 мл при н.у. Рассчитайте выход реакции с оксидом меди (II). Ответ выразите в процентах, округлите до целых.

Nº 5
4 балла
По результатам экспериментов известно, что на открытом воздухе уголь сгорает быстрее на сильном морозе, нежели в жаркую погоду.
Выберите утверждения, которые описывают такой результат эксперимента:
Реакция экзотермическая, следовательно, по принципу Ле-Шателье, скорость реакции повышается при понижении температуры
Розиция ондоторминоская споловатольно по принципу По-Шатольо
 Реакция эндотермическая, следовательно, по принципу Ле-Шателье, скорость реакции повышается при понижении температуры
На морозе температура ниже, следовательно, по уравнению
Менделеева-Клапейрона плотность газов при постоянном давлении выше, скорость реакции повышается
На морозе температура ниже, следовательно, по уравнению
Менделеева-Клапейрона плотность газов при постоянном давлении ниже, скорость реакции повышается

4.5 баллов

Основным компонентом минерала гематита является красно-бурый оксид A с $\omega(O)=30.00~\%$. Оксид A растворили в соляной кислоте, а полученный раствор упарили, в результате чего получили буро-оранжевые кристаллы вещества B ($\omega(O)=35.49~\%$). В результате нагревания 10.0~ г вещества B до 275~ С образуется коричневое вещество C массой 3.97~ г. При пропускании газа, образующегося в ходе разложения B, через раствор нитрата серебра в осадок выпадает белый творожистый осадок D массой 10.61~ г.

Определите формулы веществ $A\!-\!D$.

A	В	C	D
Ответ	Ответ	Ответ	Ответ

4 балла

Химик, запомни как оду — лей кислоту в воду

Юному химику Мише стало интересно проверить на собственном опыте, как сильно разогревается раствор при разбавлении серной кислоты дистиллированной водой.

Для этого он поместил 100 г воды в стакан с термометром и взял 10 г 98~% серной кислоты в другом стакане с термометром. Он дождался установления постоянной температуры обеих жидкостей $(20~^{\circ}\mathrm{C})$.

После этого Миша быстро, но аккуратно, при перемешивании влил кислоту в воду и заметил после этого, как температура раствора выросла до $36.8\,^{\circ}\mathrm{C}$.

Найдите тепловой эффект процесса растворения кислоты. Ответ выразите в килоджоулях на моль серной кислоты, округлите до целых. Удельную теплоёмкость раствора примите равной теплоёмкости чистой воды $4.2~\mathrm{Дж/(r\cdot K)}.$

№ 8 3.5 балла Изменение цвета — один из признаков протекания химической реакции, зачастую приятный глазу. Соотнесите уравнения реакций с изменениями окраски веществ. Примечание. Все растворимые в воде вещества взяты в виде разбавленных водных растворов. $CuSO_4 + 4NH_3 = [Cu(NH_3)_4]SO_4$ Голубой в тёмно-синий $2K_2CrO_4 + 2HCl = K_2Cr_2O_7 + 2KCl +$ Жёлтый в оранжевый H_2O Фиолетовый в зелёный $2KMnO_4 + K_2SO_3 + 2KOH =$ $\mathrm{K_{2}MnO_{4}+K_{2}SO_{4}+H_{2}O}$ Бесцветный в коричневый $3KI + O_3 + H_2O = KI_3 + 2KOH + O_2$ Фиолетовый в бесцветный KI_3+ крахмал $=\mathrm{KI}+\mathrm{I}_2\cdot$ крахмал Коричневый в тёмно-синий

Фиолетовый в бурый

Голубой в чёрный

$$\begin{split} 2KMnO_4 + 3K_2SO_3 + H_2O = \\ 2MnO_2 + 3K_2SO_4 + 2KOH \end{split}$$

 $\mathrm{Cu}(\mathrm{OH})_2 = \mathrm{CuO} + \mathrm{H}_2\mathrm{O}$

(при нагревании)

5 баллов

Титрование — метод количественного анализа, основанный на измерении объёма раствора реактива известной концентрации (титранта), расходуемого для реакции с точным объёмом исследуемого раствора. Изменение цвета титруемого раствора в присутствии индикатора свидетельствует о полном протекании реакции — вещество из аликвоты полностью прореагировало с веществом из титранта.

Заполните пропуски в таблице **цифрами**, соответствующими веществам из списка, при условии что каждая цифра встречается 1 раз:

- 1. NaHCO₃,
- 2. Na₂C₂O₄,
- $3. Na_2S_2O_3$
- 4. NaOH,
- 5. Эриохром чёрный ${f T}.$

Исследуемый раствор	Титрант	Индикатор
HCl		Фенолфталеин
	HCl	Метилораж
	$ m KMnO_4$	Без индикатора
${ m I}_2$		Крахмал
CaCl_2	Трилон Б	

Найдите массу вещества трилона Б, использованную для одного титрования, если известно, что:

- 1. Брутто-формула трилона Б (динатриевой соли этилендиаминтетрауксусной кислоты) $C_{10}H_{14}N_2Na_2O_8$.
- 2. Независимо от валентности металла 1 молекула трилона реагирует с одним катионом металла, в чём и заключается ценность этого титранта для аналитической химии.
- 3. Концентрация 10.0 мл аликвоты $CaCl_2$ была определена и составила 0.0800 моль/л. Ответ выразите в граммах, округлите до сотых.

Число

Nº 10

5 баллов

В результате хлорирования метана образовалось 2.31 г соединения с плотностью паров по воздуху, равной 5.31. Рассчитайте массу перманганата калия, который потребовался для получения хлора по реакции с соляной кислотой, если соотношение объёмов метана и хлора, введённых в реакцию, составило 1:12. Ответ выразите в граммах, округлите до сотых.

Nº 11
4 балла
Твёрдую смесь веществ A и B ($\omega(O)=58.33\%$, $\omega(C)=37.5\%$) часто используют для приготовления домашнего лимонада и в шипучих таблетках. Оба этих вещества можно найти на любой домашней кухне. A в промышленности синтезируют пропусканием углекислого газа через концентрированный раствор хлорида натрия, насыщенный аммиаком. B в промышленности получают в основном с помощью ферментации различных гидролизатов. Синтетически вещество B впервые было получено из доступного глицерина.
Запишите молярную массу A . Ответ выразите в г/моль, округлите до целых.
Число
Запишите молярную массу ${f B}$. Ответ выразите в г/моль, округлите до целых.
Число
Nº 12
4 балла
Впервые физиологическое действие «моногидрата трихлорэтаналя» (далее — вещества X) с $\omega(\mathrm{Cl})=64.35~\%$ было описано в XIX веке. По сей день оно используется в медицине и рекомендовано ВОЗ в качестве средства для анестезии. Интересно, что X — одно из органических соединений, существование которых противоречит правилу Эрленмейера о нестабильности соединений с двумя гидрокси-группами при одном атоме углерода. Определите формулу вещества X , выберите его верное название по ИЮПАК:
\bigcirc 2,2,1-трихлорэтандиол-1,1
\bigcirc 2,2,1-трихлорэтандиол-1,2
\bigcirc 2,2,2-трихлорэтандиол- 1 , 1