

КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ

ФИЗИКЕ (9 класс)

ПО

Паспорт контрольно-измерительных материалов

Раздел 1.

1. Назначение контрольно- измерительных материалов (КИМ)

Цель - контроль усвоения предметных и метапредметных результатов образования, установление их соответствия планируемым результатам освоения основной образовательной программы соответствующего уровня образования в _9 __классе.

2. Документы, определяющие содержание КИМ

Содержание КИМ определяют:

- Приказ Министерства просвещения Российской Федерации от 31.05.2021 №287 «Об утверждении федерального государственного образовательного стандарта среднего общего образования»
- Федерального государственного стандарта основного общего образования (Приказ Минпросвещения России от 18 мая 2023 года № 370 «Об утверждении федеральной образовательной программы основного общего образования» и Приказ Минпросвещения России от 27 декабря 2023 года № 1028 «О внесении изменений в некоторые приказы Министерства образования и науки Российской Федерации и Министерства просвещения Российской Федерации, касающиеся Федеральный государственных образовательных стандартов основного общего образования и среднего общего образования»)
- Основная образовательная программа ООО МАОУ СОШ №121

3. Подходы к отбору содержания, разработке структуры КИМ

Объектами контроля выступают дидактические единицы знаний и требования к формированию универсальных учебных действий (умений), закрепленных в образовательном стандарте.

Задания КИМ различаются по форме и уровню сложности, который определяется способом познавательной деятельности, необходимым для выполнения задания.

Задания, повышенного и высокого уровней сложности, в отличие от базовых, предполагает более сложную комплексную по своему характеру познавательную деятельность.

Задания КИМ по своему типу аналогичны заданиям ЕГЭ

Это позволяет обеспечить преемственность текущей, рубежной аттестации с промежуточной аттестацией.

При разработке КИМ учитываются возрастные особенности обучающихся, уровень развития их познавательной активности, объем и характер предъявляемого им учебного содержания по предмету.

Универсальные учебные действия проверяются при помощи заданий, использующих контекст учебного предмета, а также анализ разнообразных ситуаций практико-ориентированного характера.

Для проведения контроля разработан вариант КИМ

4. Характеристика структуры и содержания КИМ

Проверочная работа представлена в виде теста и заданий с полным развернутым ответом.

Часть 1 содержит 7 заданий с выбором ответа. К каждому заданию приводится 4 варианта ответа, из которых верен только один.

Часть 2 включает 3 задания, к которым требуется привести краткий ответ в виде набора цифр или числа. Задания В1 и В2 представляют собой задания на установление соответствия позиций, представленных в двух множествах. Задание В3 содержит расчетную задачу. Распределение заданий по её частям с учетом максимального первичного балла за выполнение каждой части работы дается в таблице:

№	Часть работы	Количество	Максимально	Тип заданий
		заданий		
			Первичный балл	
1	Часть 1/1	7	7	С выбором 1 ответа (ВО) или кратким ответом
2	Часть 1/2	3	6	С кратким ответом (КО)
4	Часть 2	1	3	С развернутым ответом (РО)
	ИТОГО:	11	16	

Общий план контрольно-измерительных материалов

Таблица Распределение заданий по уровням сложности, проверяемым элементам предметного, содержания, уровню подготовки, типам заданий и времени выполнения

№	уровень	Что проверяется	
задания		Коды проверяемых элементов содержания	Коды проверяемых требований к уровню подготовки учащихся
1	базовый	1.1-1.5	1.1-1.4
2	базовый	1.5-1.13	
3	базовый	1.14-1.15	
4	базовый	1.161.19	
5	базовый	.1.20-1.23	
6	базовый	2.1-2.11	
7	базовый	3.1-3.20	
12	повышенный	1.14-1.23	3-4
13	повышенный	2.1-2.11	
14	повышенный	4.1-4.4	
15	повышенный	1-4	5.1-5.2

1. Кодификатор

Предмет: **«ФИЗИКА» 9 класс**

Вид контроля: годовая контрольная работа

Кодификатор элементов содержания, используемый для составления КИМ.

код	код	элементы содержания,	
блока	элемента	проверяемые заданиями КИМ	
1		МЕХАНИЧЕСКИЕ ЯВЛЕНИЯ	
	1.1	Механическое движение. Относительность движения. Траектория. Путь.	
		Перемещение. Равномерное и неравномерное движение. Средняя	
		скорость. Формула для вычисления средней скорости: $V = \overline{S}$	
		t	
	1.2	Равномерное прямолинейное движение. Зависимость координаты тела от	
	1.2	времени в случае равномерного прямолинейного движения: $x(t) = x_0 + v_x t$	
		Графики зависимости от времени для проекции скорости, проекции	
		перемещения, пути, координаты при равномерном прямолинейном	
		движении	
	1.3	Зависимость координаты тела от времени в случае равноускоренного	
	1.5	прямолинейного движения. Формулы для проекции перемещения,	
		проекции скорости и проекции ускорения при равноускоренном	
		прямолинейном движении. Графики зависимости от времени для	
		проекции ускорения, проекции скорости, проекции перемещения,	
		координаты при равноускоренном прямолинейном движении	
	1.4	Свободное падение. Формулы, описывающие свободное падение тела по	
	1.1	вертикали (движение тела вниз или вверх относительно поверхности	
		Земли). Графики зависимости от времени для проекции ускорения,	
		проекции скорости и координаты при свободном падении тела по	
		вертикали	
	1.5	Скорость равномерного движения тела по окружности. Направление	
		скорости. Формула для вычисления скорости через радиус окружности и	
		период обращения: v=2πR/T	
		Центростремительное ускорение. Направление центростремительног	
		ускорения. Формула для вычисления ускорения:	
		Формула, связывающая период и частоту обращения: v =1/T	
	1.6	Масса. Плотность вещества. Формула для вычисления плотности: $\rho = m/V$	
	1.7	Сила – векторная физическая величина. Сложение сил	
	1.8	Явление инерции. Первый закон Ньютона	
	1.9	Второй закон Ньютона: F = m· a	
		Сонаправленность вектора ускорения тела и вектора силы, действующей	
		на тело	
	1.10	Взаимодействие тел. Третий закон Ньютона: F21 =-F12	
	1.11	Трение покоя и трение скольжения. Формула для вычисления модуля	
		силы трения скольжения: $FTp = \mu \cdot N$	
	1.12	Деформация тела. Упругие и неупругие деформации. Закон упругой	
		деформации (закон Гука): $F = k \cdot \Delta l$	
	1.13	Всемирное тяготение. Закон всемирного тяготения/ Сила тяжести.	
		Ускорение свободного падения. Формула для вычисления силы тяжести	
		вблизи поверхности Земли: F = mg	
		Искусственные спутники Земли	
	1		

	1.14	Импульс тела – векторная физическая величина. Импульс системы тел
	1.15	Закон сохранения импульса для замкнутой системы тел. Реактивное движение
	1.16	Механическая работа. Формула для вычисления работы силы: A = Fs cosα Механическая мощность. N= A/t
	1.17	Кинетическая и потенциальная энергия. Формула для вычисления
		кинетической энергии Формула для вычисления потенциальной энергии тела, поднятого над Землёй: E =mgh
	1.18	Механическая энергия. E =E k+ Ep Закон сохранения механической энергии. Формула для закона сохранения механической энергии в отсутствие сил трения: E = const Превращение механической энергии при
	1.10	наличии силы трения
	1.19	Простые механизмы. «Золотое правило» механики. Рычаг. Момент силы. М = Fl Условие равновесия рычага: М 1 +М2+ = 0 Подвижный и неподвижный блоки. КПД простых механизмов
	1.21	Давление твёрдого тела. Формула для вычисления давления твёрдого тела: p = F/S
		Давление газа. Атмосферное давление. Гидростатическое давление внутри жидкости. Формула для вычисления давления внутри жидкости: р = ρgh + р атм
	1.22	Закон Паскаля. Гидравлический пресс
	1.23	Закон Архимеда. Формула для определения выталкивающей силы, действующей на тело, погружённое в жидкость или газ: FApx. = pgV Условие плавания тела. Плавание судов и воздухоплавание
	1.24	Механические колебания. Амплитуда, период и частота колебаний. Формула, связывающая частоту и период колебаний: Механические волны. Продольные и поперечные волны. Длина волны и скорость распространения волны. λ=υ·Т Звук. Громкость и высота звука. Скорость распространения звука. Отражение и преломление звуковой волны на границе двух сред. Инфразвук и ультразвук
2		ТЕПЛОВЫЕ ЯВЛЕНИЯ
	2.1	Молекула – мельчайшая частица вещества. Агрегатные состояния вещества. Модели строения газов, жидкостей, твёрдых тел
	2.2	Тепловое движение атомов и молекул. Связь температуры вещества со скоростью хаотического движения частиц. Броуновское движение. Диффузия. Взаимодействие молекул
	2.3	Тепловое равновесие
	2.4	Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии
	2.5	Виды теплопередачи: теплопроводность, конвекция, излучение
	2.6	Нагревание и охлаждение тел. Количество теплоты. Удельная теплоёмкость. Q =cm (t 2 – t 1)
	2.7	Закон сохранения энергии в тепловых процессах. Уравнение теплового баланса: $Q1 + Q2 + = 0$
	2.8	Испарение и конденсация. Изменение внутренней энергии в процессе испарения и конденсации. Кипение жидкости. Удельная теплота парообразования. L=Q/m
	2.9	Влажность воздуха
	2.10	Плавление и кристаллизация. Изменение внутренней энергии при плавлении и кристаллизации. Удельная теплота плавления: λ=Q/m
	2.11	Тепловые машины. Преобразование энергии в тепловых машинах. Внутренняя энергия сгорания топлива. Удельная теплота сгорания топлива: Q=Q/m

3		ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ
	3.1	Электризация тел
	3.2	Два вида электрических зарядов. Взаимодействие электрических зарядов
	3.3	Закон сохранения электрического заряда
	3.4	Электрическое поле. Действие электрического поля на электрические заряды. Проводники и диэлектрики
	3.5	Постоянный электрический ток. Действия электрического тока. Сила тока. Напряжение. I=q/t U=A/q
	3.6	Электрическое сопротивление. Удельное электрическое сопротивление: R=lp/S
	3.7	Закон Ома для участка электрической цепи: I = U/R Последовательное соединение проводников. I1 = I2; U=U1 + U2; R = R1 + R2. Параллельное соединение проводников равного сопротивления. Смешанные соединения проводников
	3.8	Работа и мощность электрического тока. ; $A = U \cdot I \cdot t \ P = U \cdot I$
	3.9	Закон Джоуля – Ленца: Q=I2·R·t
	3.10	Опыт Эрстеда. Магнитное поле прямого проводника с током. Линии магнитной индукции. Электромагнит
	3.11	Магнитное поле постоянного магнита. Взаимодействие постоянных магнитов
	3.12	Опыт Ампера. Взаимодействие двух параллельных
	3.13	проводников с током. Действие магнитного поля на проводник с током. Направление и модуль силы Ампера. $F = I \cdot B \cdot 1 \cdot \sin \alpha$
	3.14	Электромагнитная индукция. Опыты Фарадея
	3.15	Переменный электрический ток. Электромагнитные колебания и волны. Шкала электромагнитных волн
	3.16	Закон прямолинейного распространения света
	3.17	Закон отражения света. Плоское зеркало
	3.18	Преломление света
	3.19	Дисперсия света
	3.20	Линза. Фокусное расстояние линзы
	3.21	Глаз как оптическая система. Оптические приборы
4		КВАНТОВЫЕ ЯВЛЕНИЯ
	4.1	Радиоактивность. Альфа-, бета-, гамма-излучения. Реакции альфа- и бета-распада
	4.2	Опыты Резерфорда по рассеянию альфа-частиц. Планетарная модель атома
	4.3	Состав атомного ядра. Изотопы
	4.4	Ядерные реакции. Ядерный реактор. Термоядерный синтез

Перечень проверяемых требований к результатам освоения основной образовательной программы основного общего образования по ФИЗИКЕ

Код	Код	Федеральный компонент	ΦΓΟC 000
раздела	контролируемого	государственного стандарта основного	
1	требования	общего образования	
1	<u> </u>	Владение основным понятийным	
1			
	1 1	аппаратом школьного курса физики	*
	1.1	Знание и понимание смысла понятий:	Формирование:
		физическое явление, физический	представлений
		закон, вещество, взаимодействие,	закономерной связи и
		электрическое поле, магнитное поле,	познаваемости явлений
		волна, атом, атомное ядро,	природы, об
		ионизирующие излучения 1	объективности
	1.2	Знание и понимание смысла физических	научного знания, с
	1.2	величин: путь, скорость, ускорение, масса,	системообразующей
		плотность, сила, давление, импульс,	роли физики для
		работа, мощность, кинетическая энергия,	развития других
		потенциальная энергия, коэффициент	естественных наук
		полезного действия, внутренняя энергия,	техники и технологий;
		температура, количество теплоты,	научного
		удельная теплоёмкость, удельная теплота	мировоззрения кан
		плавления, удельная теплота сгорания	результата изучения
		топлива, влажность воздуха,	основ строения материи
		электрический заряд, сила электрического	и фундаментальных
		тока, электрическое напряжение,	законов физики
		электрическое сопротивление, работа и	Формирование
		мощность электрического тока, фокусное	первоначальных
	4.2	расстояние линзы 1	представлений
	1.3	Знание и понимание смысла	физической сущности
		физических законов: Паскаля,	явлений природь
		Архимеда, Ньютона, всемирного	(механических,
		тяготения, сохранения импульса,	`
		сохранения механической энергии,	тепловых,
		сохранения энергии в тепловых	электромагнитных и
		процессах, сохранения электрического	квантовых), видах
		заряда, Ома для участка цепи, Джоуля	материи (вещество и
		– Ленца, прямолинейного	поле), движении кан
		распространения света, отражения	способе существования
		' ' ' '	материи; усвоение
	4 4	Света	основных идей
	1.4	Умение описывать и объяснять	механики,
		физические явления: равномерное	атомномолекулярного
		прямолинейное движение,	учения о строении
		равноускоренное прямолинейное	вещества, элементов
		движение, движение тела по окружности,	электродинамики и
		колебательное движение, передача	квантовой физики
		давления жидкостями и газами, плавание	овладение понятийным
		тел, механические колебания и волны,	аппаратом и
		диффузия, теплопроводность, конвекция,	символическим языком
		излучение, испарение, конденсация,	физики
		кипение, плавление, кристаллизация,	*

		электризация тел, взаимодействие	
		электрических зарядов, взаимодействие	
		магнитов, действие магнитного поля на	
		проводник с током, тепловое действие	
		тока, электромагнитная индукция,	
		отражение, преломление и дисперсия	
		света 2	
2		Владение основами знаний о методах	
2		научного познания и	
		экспериментальными умениями	
	2.1	Умение формулировать (различать) цели	Приобретение опыта
		проведения (гипотезу) и выводы	применения научных
		описанного опыта или наблюдения	методов познания,
	2.2	Умение конструировать	наблюдения физических
		экспериментальную установку,	явлений, проведения
			опытов, простых
		выбирать порядок проведения опыта в	экспериментальных
		соответствии с предложенной	исследований, прямых и
		гипотезой	косвенных измерений с
	2.3	Умение проводить анализ результатов	использованием
		экспериментальных исследований, в том	аналоговых и цифровых
		числе выраженных в виде таблицы или	измерительных
		графика	приборов; понимание
	2.4	Умение использовать физические	неизбежности
		приборы и измерительные инструменты	погрешностей любых
		для прямых измерений физических	измерений
		величин (расстояния, промежутка	
		времени, массы, силы, давления,	
		температуры, силы тока, электрического	
		напряжения) и косвенных измерений физических величин (плотности вещества,	
		силы Архимеда, влажности воздуха,	
		коэффициента трения скольжения, жёсткости пружины, оптической силы	
		собирающей линзы, электрического	
		сопротивления резистора, работы и	
		мощности тока)	
	2.5	Умение представлять экспериментальные	
	2.3	результаты в виде таблиц или графиков и	
		делать выводы на основании полученных	
		экспериментальных данных: зависимость	
		силы упругости, возникающей в пружине,	
		от степени деформации пружины;	
		зависимость периода колебаний	
		математического маятника от длины нити;	
		зависимость силы тока, возникающего в	
		проводнике, от напряжения на концах	
		проводника; зависимость силы трения	
		скольжения от силы нормального	
		давления	
L	I .	1''	

	2.6	Умение выражать результаты измерений и	
		расчётов в единицах Международной	
		системы	
3		Решение задач различного типа и уровня	Формирование
-		сложности 4	первоначальных
4		Понимание текстов физического	представлений о
•		содержания	физической сущности
			явлений природы
			(механических, тепловых,
			электромагнитных и
			· квантовых), видах
			материи (вещество и
			поле), движении как
			способе существования
			материи; усвоение
			основных идей механики,
			атомномолекулярного
			учения о строении
			вещества, элементов
			электродинамики и
			квантовой физики;
			овладение понятийным
			аппаратом и
			символическим языком
			физики
5		Использование приобретённых знаний и	
		умений в практической деятельности и	
		повседневной жизни 5	
	5.1	Умение приводить (распознавать)	Понимание физических
		примеры практического использования	основ и принципов
		физических знаний о механических,	действия (работы) машин
		тепловых, электромагнитных и квантовых	и механизмов, средств
		явлениях 5	передвижения и связи,
	5.2	Умение применять физические знания:	бытовых приборов,
		для обеспечения безопасности в процессе	промышленных
		использования транспортных средств,	технологических
		учёта теплопроводности и теплоёмкости	процессов, влияния их на
		различных веществ в повседневной	окружающую среду;
		жизни; обеспечения безопасного	осознание возможных
		обращения с электробытовыми	причин техногенных и
		приборами; защиты от опасного	экологических катастроф;
		воздействия на организм человека	осознание
		электрического тока, электромагнитного	необходимости
		излучения, радиоактивного излучения	применения достижений физики и технологий для
			рационального
			природопользования;
			овладение основами
			безопасного
			использования естественных и

	И
магнитных по	И
2 FOUTDOM25UMTULIV	олей,
электромагнитных	И
звуковых	золн,
естественных	И
искусственных	
ионизирующих излуч	ений
во избежание их вред	цного
воздействия	на
окружающую сред	у и
организм чело	века;
развитие ум	ения
планировать	В
повседневной жизни	свои
действия с примене	нием
полученных зн	аний
законов меха	ники,
электродинамики,	
термодинамики	И
тепловых явлений в ц	целях
сбережения здор	овья;
формирование	
представлений	0
нерациональном	
использовании	
природных ресурсо	в и
энергии, загрязн	ении
окружающей среды	как
следствия	
несовершенства маш	ин и
механизмов	

5. Распределение заданий КИМ по уровням сложности

Уровень	Количество	Max	Процент мах
сложности	заданий	первичный	первичного
заданий		балл	балла
базовый	7	7	50%
повышенный	2	4	30%
сложный	1	3	20%

Продолжительность работы: На выполнение работы отводится 40 минут.

6. Дополнительные материалы и оборудования

Непрограммируемый калькулятор

7. Система оценивания

Правильно выполненная работа оценивается 29 баллами.

Каждое правильно выполненное задание 1-7 оценивается 1 баллом

Задание считается выполненным верно, если обучающийся записал номер правильного ответа.

Задание считается невыполненным в следующих случаях:

- записан номер неправильного ответа;
- записаны номера двух и более ответов, даже если среди них указан и номер правильного ответа;
- номер ответа не записан.

Задания части 2 оцениваются в зависимости от полноты и правильности ответа.

За полное и правильное выполнение заданий 8-9 выставляется 2 балла.

При неполном ответе – 1 балл.

За полное и правильное выполнение заданий 10 выставляется 5 баллов.

При неполном выполнении в зависимости от представленности требуемых компонентов ответа -3, 2 или 1 балл.

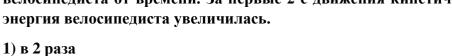
На основе баллов, выставленных за выполнение всех заданий работы, подсчитывается общий балл, который переводится в отметку по пятибалльной шкале.

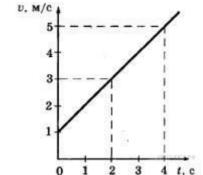
Таблица Критерии оценивания

№ задания	Количество баллов
1	1
2	1
3	1
4	1
5	1
6	1
7	1
8	2
9	2
10	Ошибок нет – 3 баллов. Допущена 1 ошибка – 2 балла,
	Допущено 2 ошибки – 1 балла. Допущено 3 ошибки – 0 баллов
Итого	13 баллов

Таблица Перевод баллов к 5-балльной отметке

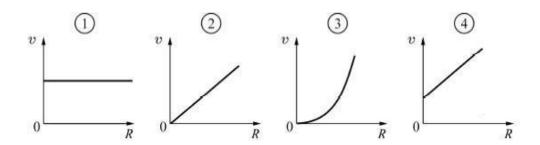
Баллы	Отметка	
11-13 баллов	Отметка «5»	
9-10 баллов	Отметка «4»	
6-8 баллов	Отметка «3»	
0-5 баллов	Отметка «2»	

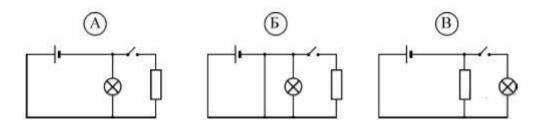

Итоговый тест по физике 9 класс


Часть А.

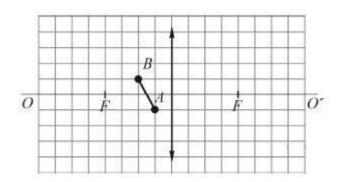
А1. Для каждого физического понятия из первого столбца подберите соответствующий пример из второго столбца.

ФИЗИЧЕСКИЕ ПОНЯТИЯ			ПРИМЕРЫ		
Α) физическая величина		1) интер	оференция	
Б) единица физической величины			2) спектроскоп		
В) физический прибор			3) частота		
			4) герц		
			5) дисперсия		
	Α	Б		В	


- А2. Мальчик и девочка тянут верёвку за противоположные концы. Девочка может тянуть с силой не более 50 Н, а мальчик — с силой 150 Н. С какой силой они могут натянуть верёвку, не сдвигаясь, стоя на одном месте?
- 1) 50 H
- 2) 100 H
- 3) 150 H
- 4) 200 H
- АЗ. На рисунке представлен график зависимости скорости велосипедиста от времени. За первые 2 с движения кинетическая энергия велосипедиста увеличилась.



- 2) в 3 раза
- 3) в 4 раза
- 4) в 9 раз


А4. Диск равномерно вращается вокруг оси, которая перпендикулярна плоскости диска и проходит через его центр. К плоскости диска прилипли мелкие песчинки. Четыре ученика нарисовали график зависимости модуля скорости v песчинки от её расстояния R до центра диска. Какой график является правильным?

- 1) 1
- 2) 2
- 3)3
- 4) 4
- А5. В сосуд аккуратно налили, не перемешивая, медный купорос и воду. Сначала сосуд поместили в холодильник, а затем переставили в тёплую комнату. Что произойдёт со скоростью диффузии?
- 1) увеличится
- 2) уменьшится
- 3) не изменится
- 4) ответ зависит от атмосферного давления
- Аб. На рисунке приведены схемы трёх электрических цепей. В каких из них лампочка не горит? Электрические ключи везде разомкнуты.

- 1) только А
- 2) только Б
- 3) A и B
- 4) БиВ
- А7. С помощью тонкой собирающей линзы ученик хочет получить изображение предмета АВ, рас-положив его относительно линзы так, как показано на рисунке.

Из предложенного перечня утверждений выберите два правильных. Укажите их номера.

- 1) Изображение предмета будет уменьшенным.
- 2) Расстояние от точки В до линзы больше, чем расстояние от линзы до изображения точки В.
- 3) Расстояние от точки А до линзы меньше расстояния от линзы до изображения точки А.
- 4) Расстояние от точки В до линзы на 2 клетки меньше, чем расстояние от линзы до изображения точки В.
- 5) Линия, соединяющая точки А и В, будет параллельна линии, соединяющей изображения точек А и В.

Часть В.

- B1. Камень лежит на дне сосуда, полностью погружённый в воду (см. рисунок). Изменится ли (и если изменится, то как) давление камня на дно, если в воду добавить поваренную соль? Ответ поясните.
- В2. Металлический шар массой m1 = 2 кг упал на свинцовую пластину массой m2 = 1 кг и остановился. При этом пластина нагрелась на 3,2 °C. С какой высоты упал шар, если на нагревание пластины пошло 80% выделившегося при ударе количества теплоты? Ответ выразить в метрах округлив до целых.
- ВЗ. В электрической печи нагревается некоторое твёрдое вещество с удельной теплоёмкостью 400 Дж/(кг·°С) и удельной теплотой плавления 112 кДж/кг. Сколько времени понадобится, чтобы на-греть это вещество на 10 °С (в твёрдом состоянии), если процесс полного расплавления вещества занимает 9 минут и 20 секунд? Мощность печи остаётся постоянной.

Ключи к тесту КИМ

A1	A2	A3	A4	A5	A6	A7
342	1	4	2	1	4	4
B1	B2	В3				
уменьшится	18м	20				

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 256233904371995990837526139856067300059550830095

Владелец Гунба Елена Германовна

Действителен С 06.11.2025 по 06.11.2026