Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа №121

Приложение к рабочей программе по учебному предмету «ХИМИЯ» Углубленный уровень СОО

КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ХИМИИ УГЛУБЛЕННЫЙ УРОВЕНЬ (10 КЛАСС)

Контрольно – измерительные материалы для проведения промежуточной аттестации по учебному предмету «химия» Профильный уровень

10 класс

Спецификация

контрольных измерительных материалов для проведения итоговой административной работы по химии 10 класс (естественно - научный профиль)

1. Назначение работы

Работа предназначена для проведения процедуры итогового контроля индивидуальных достижений, обучающихся 10 класса в образовательном учреждении по предмету «Химия».

2. Документы, определяющие содержание работы

Содержание и структура итоговой работы по предмету «Химия» разработаны на основе следующих документов:

- 1. Приказ Министерства просвещения Российской Федерации от 31.05.2021 №287 «Об утверждении федерального государственного образовательного стандарта среднего общего образования»
- 2. Федерального государственного стандарта основного общего образования (Приказ Минпросвещения России от 18 мая 2023 года № 370 «Об утверждении федеральной образовательной программы основного общего образования» и Приказ Минпросвещения России от 27 декабря 2023 года № 1028 «О внесении изменений в некоторые приказы Министерства образования и науки Российской Федерации и Министерства просвещения Российской Федерации, касающиеся Федеральный государственных образовательных стандартов основного общего образования и среднего общего образования»)
- 3. Основная образовательная программа ООО МАОУ СОШ №121

3. Содержание работы

На основании документов, перечисленных в п.2 Спецификации, разработан кодификатор, определяющий в соответствии с требованиями ФГОС СОО планируемые результаты освоения основной образовательной программы среднего общего образования по предмету «Химия» для проведения итогового контроля индивидуальных достижений обучающихся. В работе представлены задания базового, повышенного и высокого уровня.

Распределение заданий по основным разделам

Раздел курса	Число за- даний
Теоретические основы органической химии.	2
Предельные углеводороды (алканы).	1
Непредельные углеводороды.	1
Ароматические углеводороды (арены).	1
Спирты и фенолы.	1
Альдегиды, кетоны, карбоновые кислоты.	2
Углеводы.	1

Количественные расчёты по уравнению реакции с использованием газо-	1
вых законов и количественных соотношений	
Генетическая связь между основными классами органических соединений	1
Расчёты по химическим формулам и уравнениям реакций	1
Установление молекулярной и структурной формулы вещества	1
Итого:	13

4. Время выполнения работы

Примерное время на выполнение заданий составляет:

- 1) для заданий базового уровня сложности 1 до 2 минут;
- 2) для заданий повышенной сложности от 2 до 3 минут;
- 3) для заданий высокого уровня сложности до 5-10 минут

На выполнение всей работы отводится 45 минут.

5. Дополнительные материалы и оборудование

При проведении работы в качестве дополнительного оборудования может использоваться калькулятор, Периодическая система химических элементов Д.И. Менделеева; таблица растворимости солей, кислот и оснований в воде, электрохимический ряд напряжений металлов.

6. Оценка выполнения отдельных заданий и работы в целом

- 1) За верное выполнение каждого из заданий № 1-5 выставляется 1 балл, в другом случае -0 баллов.
- За верное выполнение каждого из заданий № 6-10 выставляется 2 балла.
 В случае 1 ошибки 1 балл.
- 3) За ответы на задания № 11-5 баллов (1 балл за каждое из пяти верных написанных уравнений реакций с указанием условий их протекания»

№ 12 – 4 балла

Верно составлено уравнение реакции – 1 балл

Произведены количественные расчёты из условия задачи – 1 балл

Произведены количественные расчёты по материальному балансу из уравнений реакций — 1 балл

Произведены итоговые расчёты, дающие однозначный ответ – 1 балл

№ 13 – 3 балла

Выведена МФ искомого органического вещества – 1 балл

Составлена структурная формула – 1 балл

Написано уравнение реакции – 1 балл

Максимальный первичный балл за выполнение всей работы – 27.

<u>Шкала перевода первичного балла за выполнении контрольной работы в отметку</u> по 5-ной шкале

Отметка по 5-	2	3	4	5
ной шкале				
Первичный балл	0-12	13 - 18	19-22	23-27

7. План работы

Условные обозначения: Уровень сложности: B- базовый уровень сложности, $\Pi-$ повышенный уровень, B- высокий уровень. Тип задания: BO- с выбором ответа, KO- краткий ответ, PO- с развернутым ответом.

№	Блок содержания	Объект оценивания	Код про-	Уро- вень	Мах балл
			умений	сло жно сти	
1.	Теоретические основы органической химии	Гомологический ряд. Гомологи. Виды изомерии. Номенклатура.	1.1.,2.1., 2.2.1., 2.2.2., 2.2.4.	Б	1
2.	Теоретические основы органической химии	Классификация органических соединений. Умение устанавливать соответствие	2.2.1., 2.2.3	П	2
3.	Предельные углеводороды (алканы)	Строение, химические свойства, получение алканов	1.2., 2.3.1.	Б	1
4.	Непредельные уг- леводороды	Строение, химические свойства, получение непредельных углеводородов	1.2., 2.3.1	Б	1
5.	Непредельные уг- леводороды	Генетическая связь непредельных углеводородов с другими классами органических соединений	2.2.5., 2.3.2	В	5
6.	Ароматические углеводороды (арены)	Строение, химические свойства, получение ароматических углеводородов	1.2., 2.3.1.	Б	1
8.	Спирты и фенолы	Строение, химические свойства, получение спиртов и фенолов	1.2., 2.3.1.	Б	1
9.	Альдегиды, ке- тоны, карбоновые кислоты	Строение, химические свойства, получение альдегидов, кетонов и карбоновых кислот	1.2., 2.3.1.	Б	1
10.	Альдегиды, ке- тоны, карбоновые кислоты	Генетическая связь альдегидов, кетонов и карбоновых кислот с другими классами органических соединений. Умение устанавливать соответствие	2.2.5.	П	2
11.	Углеводы	Строение, химические свойства, получение углеводов. Умение проводить множественный выбор	1.2., 2.3.1.	П	2
12.	Количественные расчёты	Расчёты по уравнению реакции с использованием газовых законов и молярных соотношений	2.4.1	Б	1
13.	Количественные расчёты	Расчёты массы (объёма, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси). Расчёты с использованием понятия «массовая доля вещества в растворе». Расчёты массовой доли (массы) химического соединения в смеси	2.4.1.	П	4
14.	Количественные расчёты	Установление молекулярной и структурной формулы вещества	2.3.1 2.3.2 2.4.1.	П	3

КОДИФИКАТОР

Перечень элементов содержания, проверяемых на контрольной работе по химии

Код элементов	Проверяемые умения
	1. Знать/понимать
1.1	основные теории химии: химической связи, электролитической диссоциации, строения органических соединений
1.2	важнейшие вещества и материалы: уксусная кислота, метан, этилен, ацетилен, бензол, этанол, жиры, мыла, глюкоза, сахароза, крахмал, клетчатка, белки, искусственные и синтетические волокна, каучуки, пластмассы.
	2.Уметь
2.1	называть изученные вещества по тривиальной или международной номенклатуре
2.2.	определять/классифицировать
2.2.1	вид химических связей в соединениях
2.2.2	пространственное строение молекул
2.2.3	принадлежность веществ к различным классам органических соединений
2.2.4	гомологи и изомеры
2.2.5	химические реакции в органической химии (по всем известным классификационным признакам)
2.3	характеризовать
2.3.1	строение и химические свойства изученных органических соединений
2.3.2	зависимость свойств органических веществ от их состава и строения
2.4	планировать/проводить
2.4.1	вычисления по химическим формулам и уравнениям

Li Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb (H) Sb Bi Cu Hg Ag Pt РЯД АКТИВНОСТИ МЕТАЛЛОВ / ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ

активность металлов уменьшается

Zn^{2+} Ы 피스 Ы Д H Mn²⁺ Η Ы Д Д Д Η РАСТВОРИМОСТЬ КИСЛОТ, СОЛЕЙ И ОСНОВАНИЙ В ВОДЕ င္ပ္ခ် \pm d Д H H Ni² Ы \equiv Ξ Д Д 0. Fe Η H Д Ы Fe²⁺ H Д \pm d \equiv င့် \equiv H Д Ы Ρţ H Z Ы Ы Д Sr^{2+} \mathbf{z} H 0 \equiv Д 0 Mg² Ξ H Ь $Ca^{\frac{1}{2}}$ Σ H Ы Ь Д Ba²⁺ Σ ¥ † Ы Ы Д Д Д Д Д Na Ы Д Д Д Ы Д

₽

±

Z a a

능

'n

Ы

₽

Cu²

Sn²⁺

 Pb^{2+}

Hg²⁺

Ag

Ξ

 $\Xi \mid \Xi$

Ь

 $\mathbb{Z}|\mathbb{X}$

H

田田

H

H

Н

H

 Ξ

Σ

C

 \mathbb{H}

 \mathbb{H}

C C D C D

H

6

 Ξ

 $\Sigma \square \square$

HUN

 \equiv

d d

Ы

Ы

Ь

SO32

FS.

4 4

HSO₃

SO₄²-

Ь

Р

SZ

Д

4 4 4

4 4

0

c.

피피교

 \mathbf{z}

Р

Ы

0 0

Ы

Д

Д

Ы

0.

0.

A H

6.

6.

Д

Д

Ы

Ь

리니田

Д

Д

Д

0

Д

HPHPP

Д

Д

Д

Ь

Д

4 4 4 4 4

A H

4 4

NO₂-

ç.

Д

6.

c.

 \geq

C. H

 \mathbf{z}

H

H

 \equiv

H

 Ξ

H

H

Ь

0

0

ᆈ田

Д

H

H

 \pm

H

Д

A H

Д

Ь

Д

CH3COO-

503 F

H

H

HH

 \blacksquare

H

H

H

H

HHA

 $\Xi | \Sigma$

田田

0.

HPO₄²

Po T 0.0

H

Σ

Σ

 \exists

"Р" — растворяется (> 1 г на $100 \ \Gamma \, H_2 O$) "М" — мало растворяется (от $0.1 \ \Gamma \, до \, 1$ г на $100 \ \Gamma \, H_2 O$)

"Н" – не растворяется (меньше 0,01 г на 1000 г воды)

"-" – в водной среде разлагается

Периодическая система элементов Д.И. Менделеева

H		_				_				_					_			_	_							_				_			_				·			\neg	- 1
House Hous			H		Гепий	1 CHERT		Š				Ar								Ā								Xe	Cocuon					Ď,	2	Радон	110				
Hamma Hamm		2	1	2000	4,0020		10		20,183	неон	18		39,948	Аргон					36		83,80	Криптон					54	;					.,0	90	[222]						
Handring															28		58,71	Никель				\dashv	46		106,4					78		195,09	T								
H	IIIA														27		9332						45		02,905					77		192,2							[266]	леи шерии	
П ПІП															26		5,847						44		1,07					92		190,2					_		[265]		
П П																Fe		Желе						Ru		Руте				L	õ		COM					H		1 2 2	
П П П П П V V VI Be 4 5 6 7 N 8 O Бериллий 12,01115 С 7 N 8 O Be 9,0122 10,811 Bop 14 Si 15,9994 O Re 20,122 13,811 Eop 7 N 8 O Ag 20,122 13,811 Eop 20 7 N 8 O American 12 13 20 31 American American S Cepta American 20 Se 7 American American S S Cepta So 20 31 Ca 14 40 S 14,90 S S S S S S S Cepta S S S S S S S S S S	Ш							<u>-</u>		Фтор		J			25		54,938	нец					43			ий		_		75		186,2		*	¥	Астат	107		[262]		
Ве 4 5 6 7 8 Ве 4 5 6 7 8 Бериллий 13 Бор 12,01115 С 7 8 Матний 12 13 Бор 14 Si 14,0067 15,9994 Матний 24,312 26,9815 All 14 Si 14,0067 15,9994 Кальций 20 Sc 21 Triran 47,90 50,973 All Кальций 20 Sc Triran 47,90 50,973 All All Sr 20 21 Triran 47,90 50,934 32,064 All Кальций 20 22 CG 33 All 32,064 All Sr 20 21 Triran 47,90 Signaturii All Al							6		18,998		17		35,453			Mn		Марган	35		79,904	Бром		Tc		Технеп	53		126,90		Re	:	Рении	68	210			Bh	Posseriff	рории	
Ве 4 5 B 6 С 7 8 Ве 9,0122 10,811 B 6 7 N 8 Бериллий 12 13 14,0067 15,99 15,99 15,99 Ма 24,312 26,9815 AI 14,0067 15,99 32,06 Ма 24,312 26,9815 AI 14 AI 15 16 Са 40,08 Sc 44,956 Tri and								0		слород		S		Cepa	24		51,996			Š		Селен	42		95,94	СН		Te	Тетих	74		183,85	J.W.	ď	0	олоний	106		[263]	рдии	,
Ве 4 5 6 С 7 Ве 4 5 6 С 7 Бериллий 12 13 14 14,0067 Бериллий 12 13 14 5 14,0067 Ма 24,312 26,9815 All 14,0067 14,0067 Са 40,08 Ccahuuй 20 21 47,90 80,973 Кальций 20 21 12,01115 V 50 74,9216 Са 40,08 Ccahuuй 44,956 17 47,90 80 30,9738 Кальций 20 21 22,59 24,916 30,9738 30,9738 S 31 44,956 17 47,90 80 30,9738 S 40,08 Ccahuuй 32 44 44,916 30,9738 S 40,08 32 33 34 44 30 30,9738 S 43 44 <t< td=""><th>Ν</th><td></td><td></td><td></td><td></td><td></td><td>∞</td><td></td><td>15,9994</td><td>K</td><td>16</td><td></td><td>32,064</td><td></td><td></td><td>Ċ</td><td></td><td>Хром</td><td>34</td><td></td><td>78,96</td><td></td><td></td><td>Mo</td><td></td><td>Молибл</td><td>52</td><td>;</td><td></td><td></td><td>W</td><td></td><td>Больфр</td><td>10</td><td>[210]</td><td></td><td></td><td>Rf</td><td>Dozomeko</td><td>TAHOU</td><td></td></t<>	Ν						∞		15,9994	K	16		32,064			Ċ		Хром	34		78,96			Mo		Молибл	52	;			W		Больфр	1 0	[210]			Rf	Dozomeko	TAHOU	
Ве 4 5 6 С Ве 9,0122 10,811 Бор С Мв 24,312 26,9815 All Бор С Мв 24,312 26,9815 All Бор С С Са 20 21 Ті С	Λ								14,0067	A30T	15	Ъ	30,9738	фосфор	23		50,942	Ванадий	33	As	74,9216	Мышьяк	41		92,906	Ниобий			121,75 Cvnema	73		180,948	Тантал			Висмут	105		[262]	WOJINGTINI * TAT	
П П П П Ве 4 5 В 6 Бериллий 12 13 В 6 Mg 24,312 26,9815 AI 12,01115 Mg 24,312 26,9815 AI 14,0115 Ca 20 21 Ti Kg.086 Kaльций C Сканций Anomunui Kg.086 Kg.086 S.3 C Сканций C Сканций Trian Fep S.3 C Сканций 30 Zr Fep S.3 C Сканций 30 Zr Fep S.3 Luna G9,72 Tranmi Trian S.3 Luna 49 10 50 Ba 13,734 H H H Bapmit Trian 207,19 C 200,59 Hg 12271 Db Ra Ra Actanuit Laminit Laminit							i	ပ		подэп.		S		емний	22		47,90		_	Š		маний	40					S	0900	72					1	винец	101				
П П III Be 4 5 Mg 9,0122 10,811 Mg 24,312 26,9815 Marhuii 20 Sc 44, Kalbuuii 20 Sc 44, Kalbuuii 20 Sc 44, So 7 88, 7 Sr 33 11,482 149 Ba 112,40 114,82 149 Ba 137,34 13, 13, Ba 137,34 13, 13, Ba 137,34 13, 13, Ba 137,34 13, 13, Ba 137,34 204,37 120 Paurii 1226 13, 13, Paurii 1226 13, 13,	M						9		12,01115	γI	14		28,086			Ξ		Тиган	32			Гер		Zr		Пирконий	50	:					1 афиии	78	207.19			Dp	Triferents	Дуошин	
П П П Ве 4 5 Ме 9,0122 10,811 Ме 24,312 26,9815 Матний 20 Sc Са 40,08 Cкандий Кальций 20,72 114,82 Sr 7 69,72 Стронций 49 49 Стронций 111,482 114,82 Калмий 112,40 114,82 Калмий 137,34 13 паттан 80 137,34 204,37 Ва 137,34 204,37 Радий 88 88 Валий 12261 Актиппи								m	ı	рор		A		миний	21		44,956			Ğ		аплий	39		88,905			=	Z	57		138,81		F	=	аплий	68				
Ве 9,0122 Бериллий 12 Ма 24,312 Матний 20 Са 20,088 Кальций 38 Sr 87,62 Стронций 87,62 Стронций 87,62 Стронций 88 Ва 137,34 Варий 80 НВ 88 Ва 137,34 Варий 88 Ва 12,263	Ш						S		10,811		13		26,9815	AJIRO				Скандий	31					~		Иттрий	49	:			La *		Лантан	18	204.37			Ac **	A	ЛКІМІИМ	
Ве Верипли Ме Магний Магний Верипли Верипли Магний Верипли Верипли Верип Вери						_			0122						20		40,08					Цинк	38		7,62					26							-				
Н Н Н 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ш								J) ;	рериллик.		Mg				Ca			30							Стронций	48	:					Барии					Ra	Downs	гадии	
1 Н Н Н 1,00797 ВОЗДОРОЗ ВОЗДОРОЗ ВОЗДОРОЗ ВОЗДОРОЗ ВОЗДОРОЗ В 39,102 В 85,47		1	Ξ.		1,00797	родород	8		66,939	Литий		Na	22,9898	Натрий	61	*	39,102	Калий	29	C	63,546	Медь	37	Rb	85,47	Рубидий		Ag	107,868 Cenefino	55	c	132,905	Цезии		196.961	Золото	87	포	[223]	Франции	
		-					7				'n				4	_					_		5				-			9	_		T				7			1	

[257] Лоуренсий

Ľ

102

100

174,97

173,04

168,934 69

Иттербий

"

Yb

T_m

| Er 167,26 | 89

Dy 162,50 99

158,924 65

Tb

5

Ξ

[145] 19

> 144,24 Неодим

Ž

Ρŗ

| Ce 140,12 |

Церий

Pa

Th 232,038

Торий

Прометий Pm

2

63 151,96 Европий

62 150,35 Самарий Sm

9

59 140,907 Празеодим

28

Диспрозий

157,25 158,5 Гадолиций Тербий **АКТИНОИДЦЫ

29 164,930 Гольмий H₀

Фамилия, имя	класс	Дата	2022 года
Итоговая работа за (профил	а учеб ьный курс)	ный год	
Итоговая работа состоит из двух частей, е держит 10 заданий с кратким ответом, час ветом. На выполнение итоговой работы по ниям части 1 является последовательность вета в тексте работы, Ответы к заданиям всего хода выполнения задания. Допускается чёрными чернилами. При выполнении задани черновике не учитываются при оценивании р При выполнении работы используйте Перио Д.И. Менделеева; таблицу растворимости с мический ряд напряжений металлов. Эти со тексту работы. Для вычислений используйт Баллы, полученные Вами за выполненные заданить как можно больше заданий и набрать Желаел	сть 2 содеро химии отвос цифр или чи 11-13 включ я использова й можно пол даботы. дическую си олей, кислоп проводител пе непрограм ания, сумми наибольшее и успеха!	нсит 3 задани дится 45 мин исло. Ответ з иают в себя к иние гелевой, пьзоваться ч стему химич стему химич и оснований ьные матери мируемый ка руются. Пос количество 6	ия с развёрнутым от- кут. Ответом к зада- вапишите в поле от- подробное описание капиллярной ручек с ерновиком. Записи в ческих элементов й в воде, электрохи- иалы прилагаются к илькулятор. тарайтесь выпол- баллов.
установите соответствие между молек: (группой), к которому(-ой) оно принад буквой, подберите соответствующ обозначенную цифрой.	дежит: к каж	кдой позиции	, обозначенной
B) C ₆ H ₆ O 2) 3 B) C ₃ H ₆ O ₂ 3) 4 5)	КЛ фенолы альдегиды спирты алканы аминовислотн сложные эфи		IA)
Запишите в таблицу выбранные ц буквами. Ответ: А Б В Ответ:	ифры под	соответствую	шіюми
Из предложенного перечня выберите является структурным изомером. 1) бутин-1 2) бутадиен-1,3 3) пиклобутан 4) пентен-1 5) 2-метилиропен Запишите в поле ответа номера выбранны Ответ:		ва, для кот	орых буген-1

•	•	•
- P	Nก	4
	V	

Из предложенного перечня выберите два вещества, которые не образуются при
хлорировании метана на свету.
1) хлорметан
2) тетрахлорметан
3) водород
4) этаналь
5) хлороводород
Запишите в поле ответа номера выбранных веществ.
Ответ: No 4.
Из предложенного перечня выберите два вещества, которые <u>не образуются</u> при
Из предложенного перечня выберите два вещества, которые <u>ве могут</u>
образоваться при нагревании пропанола-1 с концентрированной серной
кислотой.
1) пропин
2) пропен
3) пропилсульфат
4) дипропиловый эфир
5) пропан
Запишите в поле ответа номера выбранных веществ.
Ответ:
№ 5.
Из предложенного перечня выберите два вещества, которые реагируют как с глюкозой, так и с сакарозой. 1) гидроксид меди(II) 2) кислород 3) аммиачный раствор оксида серебра(I) 4) вода 5) этан Запишите в поле ответа номера выбранных веществ. Ответ:

№ 6.

Установите соответствие между названием вещества и продуктом, преимущественно образующимся при его взаимодействии с избытком бромоводорода: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

НАЗВАНИЕ ВЕЩЕСТВА

- А) пропилен
- Б) пиклопропан
- В) бутен-2
- Г) бутин-1

ПРОДУКТ ВЗАИМОДЕЙСТВИЯ

- 2-бромпропан
- 1-бромпропан
- 1,2-дибромпропан
- 4) 2-бромбутан
- 5) 2,2-дибромбутан
- б) 1,1-дибромбутан

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:	A	Б	В	Γ

№ 7.

Установите соответствие между реагирующими веществами и органическим веществом, которое является продуктом реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА

- A) СН₃СООН и СН₃ОН (при нагревании в 1) метилацетат присутствии конц. серной кислоты)
- CH₃COOH и C₂H₃OH (при нагревании в присутствии конц. серной кислоты)
- В) С₃Н₇ОН (при нагревании в присутствии конц. серной кислоты)
- ПООН и С₂Н₃ОН (при нагревании в присутствии конц. серной кислоты)

ПРОДУКТ РЕАКЦИИ

- этилформиат
- 3) метилформиат
- 4) этиловый эфир уксусной кислоты
- дипропиловый эфир
- метилэтиловый эфир

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:	A	Б	В	Γ

№ 8.

Задана следующая схема превращений веществ:

$$X \longrightarrow Cl \xrightarrow{Y} CH_3$$

Определите, какие из указанных веществ являются веществами X и Y.

- HCl
- NaCl
- Cl₂
- CH₃Cl
- CH₁OH

Запишите в таблицу номера выбранных веществ под соответствующими буквами.

Ответ:

No 9.

Установите соответствие между двумя веществами и признаком реакции, протекающей между ними: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВА

- A) стеарат натрия и CaCl₂(p-p)
- Б) этаналь и KMnO₄(H⁺)
- В) бутен-2 и Вг₂(р-р)
- муравьиная кислота и NaOH

ПРИЗНАК РЕАКЦИИ

- выделение беспветного газа
- 2) обеспвечивание раствора
- образование белого осадка
- 4) растворение осадка
- видимые признаки реакции отсутствуют

Запишите в таблицу выбранные цифры под соответствующими буквами.

_	Α	Б	В	Γ
Ответ:				

№ 10.

[28] Вычислите объем кислорода, который потребуется для сжигания 10 л паров пентана.
Объемы газов измерены при одинаковых условиях. Ответ дайте в литрах с точностью до целых.

II часть

№ 11.

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

2-метилпропен
$$\xrightarrow{\text{KMnO}_4, \text{ H}_2\text{SO}_4, t^o} \text{ X}_1 \xrightarrow{\text{H}_2, \text{ кат.}} \text{ X}_2 \xrightarrow{}$$
 изопропилацетат $\xrightarrow{\text{Ca(OH)}_2, \text{ H}_2\text{O}, t^o} \text{ X}_3 \xrightarrow{}$ ацетон

При написании уравнений реакций используйте структурные формулы органических веществ.

№ 12.	
вор нагре Определи	К этанолу массой 2,3 г добавили 60 г горячего 15%-го перманганата калия, подкисленного серной кислотой. Растевали до полного окисления этанола в уксусную кислоту. те массовую долю перманганата калия в полученном после реакции растворе.

№ 13.	ages to opinion ages a speciment accepts a series and a procession of the series of th
	(н.у.) и 2,25 г воды.
	Известно, что при окислении этого вещества сернокислым раствором
	перманганата калия образуется одноосно́вная кислота и выделяется
	углекислый газ.
	На основании данных условия задания:
	 произведите вычисления, необходимые для установления молекулярной
	формулы органического вещества и запишите молекулярную формулу
	исходного органического вещества;
	2) составьте структурную формулу этого вещества, которая однозначно
	отражает порядок связи атомов в его молекуле:
	3) напишите уравнение реакции окисления этого вещества сернокислым
	раствором перманганата калия.
	F

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 256233904371995990837526139856067300059550830095

Владелец Гунба Елена Германовна

Действителен С 06.11.2025 по 06.11.2026