Аннотация
к рабочей программе
учебного предмета « Алгебра и начала математического анализа»
Уровень СОО
Учебный курс «Алгебра и начала математического анализа» является одним из
наиболее значимых в программе среднего общего образования, поскольку, с одной
стороны, он обеспечивает инструментальную базу для изучения всех естественно-научных
курсов, а с другой стороны, формирует логическое и абстрактное мышление обучающихся
на уровне, необходимом для освоения информатики, обществознания, истории,
словесности и других дисциплин. В рамках данного учебного курса обучающиеся
овладевают универсальным языком современной науки, которая формулирует свои
достижения в математической форме.
Учебный курс алгебры и начал математического анализа закладывает основу для
успешного овладения законами физики, химии, биологии, понимания основных тенденций
развития экономики и общественной жизни, позволяет ориентироваться в современных
цифровых и компьютерных технологиях, уверенно использовать их для дальнейшего
образования и в повседневной жизни. В то же время овладение абстрактными и логически
строгими конструкциями алгебры и математического анализа развивает умение находить
закономерности, обосновывать истинность, доказывать утверждения с помощью индукции
и рассуждать дедуктивно, использовать обобщение и конкретизацию, абстрагирование и
аналогию, формирует креативное и критическое мышление.
В ходе изучения учебного курса «Алгебра и начала математического анализа»
обучающиеся получают новый опыт решения прикладных задач, самостоятельного
построения математических моделей реальных ситуаций, интерпретации полученных
решений, знакомятся с примерами математических закономерностей в природе, науке и
искусстве, с выдающимися математическими открытиями и их авторами.
Учебный курс обладает значительным воспитательным потенциалом, который
реализуется как через учебный материал, способствующий формированию научного
мировоззрения, так и через специфику учебной деятельности, требующей
продолжительной концентрации внимания, самостоятельности, аккуратности и
ответственности за полученный результат.
В основе методики обучения алгебре и началам математического анализа лежит
деятельностный принцип обучения.
В структуре учебного курса «Алгебра и начала математического анализа» выделены
следующие содержательно-методические линии: «Числа и вычисления», «Функции и
графики», «Уравнения и неравенства», «Начала математического анализа», «Множества и
логика». Все основные содержательно-методические линии изучаются на протяжении двух
лет обучения на уровне среднего общего образования, естественно дополняя друг друга и
постепенно насыщаясь новыми темами и разделами. Данный учебный курс является
интегративным, поскольку объединяет в себе содержание нескольких математических
дисциплин, таких как алгебра, тригонометрия, математический анализ, теория множеств,
математическая логика и другие. По мере того как обучающиеся овладевают всё более
широким математическим аппаратом, у них последовательно формируется и
совершенствуется умение строить математическую модель реальной ситуации, применять
знания, полученные при изучении учебного курса, для решения самостоятельно
сформулированной математической задачи, а затем интерпретировать свой ответ.
Содержательно-методическая линия «Числа и вычисления» завершает формирование
навыков использования действительных чисел, которое было начато на уровне основного
общего образования. На уровне среднего общего образования особое внимание уделяется
формированию навыков рациональных вычислений, включающих в себя использование
различных форм записи числа, умение делать прикидку, выполнять приближённые
вычисления, оценивать числовые выражения, работать с математическими константами.
Знакомые обучающимся множества натуральных, целых, рациональных и действительных
чисел дополняются множеством комплексных чисел. В каждом из этих множеств
рассматриваются свойственные ему специфические задачи и операции: деление нацело,
оперирование остатками на множестве целых чисел, особые свойства рациональных и
иррациональных чисел, арифметические операции, а также извлечение корня натуральной
степени на множестве комплексных чисел. Благодаря последовательному расширению
круга используемых чисел и знакомству с возможностями их применения для решения
различных задач формируется представление о единстве математики как науки и её роли в
построении моделей реального мира, широко используются обобщение и конкретизация.
Линия «Уравнения и неравенства» реализуется на протяжении всего обучения на
уровне среднего общего образования, поскольку в каждом разделе Программы
предусмотрено решение соответствующих задач. В результате обучающиеся овладевают
различными методами решения рациональных, иррациональных, показательных,
логарифмических и тригонометрических уравнений, неравенств и систем, а также задач,
содержащих параметры. Полученные умения широко используются при исследовании
функций с помощью производной, при решении прикладных задач и задач на нахождение
наибольших и наименьших значений функции. Данная содержательная линия включает в
себя также формирование умений выполнять расчёты по формулам, преобразования
рациональных, иррациональных и тригонометрических выражений, а также выражений,
содержащих степени и логарифмы. Благодаря изучению алгебраического материала
происходит дальнейшее развитие алгоритмического и абстрактного мышления
обучающихся, формируются навыки дедуктивных рассуждений, работы с символьными
формами, представления закономерностей и зависимостей в виде равенств и неравенств.
Алгебра предлагает эффективные инструменты для решения практических и естественнонаучных задач, наглядно демонстрирует свои возможности как языка науки.
Содержательно-методическая линия «Функции и графики» тесно переплетается с
другими линиями учебного курса, поскольку в каком-то смысле задаёт последовательность
изучения материала. Изучение степенной, показательной, логарифмической и
тригонометрических функций, их свойств и графиков, использование функций для решения
задач из других учебных предметов и реальной жизни тесно связано как с математическим
анализом, так и с решением уравнений и неравенств. При этом большое внимание уделяется
формированию умения выражать формулами зависимости между различными величинами,
исследовать полученные функции, строить их графики. Материал этой содержательной
линии нацелен на развитие умений и навыков, позволяющих выражать зависимости между
величинами в различной форме: аналитической, графической и словесной. Его изучение
способствует развитию алгоритмического мышления, способности к обобщению и
конкретизации, использованию аналогий.
Содержательная линия «Начала математического анализа» позволяет существенно
расширить круг как математических, так и прикладных задач, доступных обучающимся, так
как у них появляется возможность строить графики сложных функций, определять их
наибольшие и наименьшие значения, вычислять площади фигур и объёмы тел, находить
скорости и ускорения процессов. Данная содержательная линия открывает новые
возможности построения математических моделей реальных ситуаций, позволяет находить
наилучшее решение в прикладных, в том числе социально-экономических, задачах.
Знакомство с основами математического анализа способствует развитию абстрактного,
формально-логического и креативного мышления, формированию умений распознавать
проявления законов математики в науке, технике и искусстве. Обучающиеся узнают о
выдающихся результатах, полученных в ходе развития математики как науки, и об их
авторах.
Содержательно-методическая линия «Множества и логика» включает в себя
элементы теории множеств и математической логики. Теоретико-множественные
представления пронизывают весь курс школьной математики и предлагают наиболее
универсальный язык, объединяющий все разделы математики и её приложений, они
связывают разные математические дисциплины и их приложения в единое целое. Поэтому
важно дать возможность обучающемуся понимать теоретико-множественный язык
современной математики и использовать его для выражения своих мыслей. Другим важным
признаком математики как науки следует признать свойственную ей строгость
обоснований и следование определённым правилам построения доказательств. Знакомство
с элементами математической логики способствует развитию логического мышления
обучающихся, позволяет им строить свои рассуждения на основе логических правил,
формирует навыки критического мышления.
В учебном курсе «Алгебра и начала математического анализа» присутствуют основы
математического моделирования, которые призваны способствовать формированию
навыков построения моделей реальных ситуаций, исследования этих моделей с помощью
аппарата алгебры и математического анализа, интерпретации полученных результатов.
Такие задания вплетены в каждый из разделов программы, поскольку весь материал
учебного курса широко используется для решения прикладных задач. При решении
реальных практических задач обучающиеся развивают наблюдательность, умение находить
закономерности, абстрагироваться, использовать аналогию, обобщать и конкретизировать
проблему. Деятельность по формированию навыков решения прикладных задач
организуется в процессе изучения всех тем учебного курса «Алгебра и начала
математического анализа».
На изучение учебного курса «Алгебра и начала математического анализа» отводится
268 часов: в 10 классе – 136 часов (4 часа в неделю), в 11 классе – 136 часов (4 часа в
неделю).